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SUMMARY

A semi-implicit discretization for the shallow water equations is discussed, which uses triangular
Delaunay cells on the sphere as control volumes and conserves mass and potential vorticity. The
geopotential gradient, the Coriolis force terms and the divergence of the velocity �eld are discretized
implicitly, while an explicit time discretization is used for the non-linear advection terms. The results
obtained with a preliminary implementation on some idealized test cases are presented, showing that the
main features of large scale atmospheric �ows are well represented by the proposed method. Copyright
? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A semi-implicit discretization for the shallow water equations is discussed, which uses the
triangular cells of a Delaunay triangulation on the sphere as control volumes. A preliminary
version of the same method was introduced in Reference [1]. The discrete model variables
are the velocity components normal to the cell sides and the cell averaged values of the
geopotential height, so that the method can be seen as an extension of the C-grid staggering
on quadrilateral grids (see e.g. References [2, 3]) to triangular grids. The Raviart–Thomas
�nite element of order zero (see e.g. References [4, 5]) is used to reconstruct a uniquely de-
�ned velocity �eld from the velocity components normal to the cell sides. The geopotential
gradients, the Coriolis force terms and the divergence of the velocity �eld are discretized im-
plicitly, while an explicit time discretization is used for the non-linear advection terms. The
resulting numerical method conserves mass and potential vorticity by construction. Results
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obtained with a preliminary implementation on a quasi-uniform icosahedral grid demonstrate
the e�ective accuracy of the proposed method and its potential for application to general cir-
culation models. Finite element approaches based on such geodesic grids have been introduced
in References [6, 7]. Finite volume approaches were instead presented in References [8–10].
Usually, the hexagonal and pentagonal cells of Voronoi tessellations have been used as control
volumes. However, triangular control volumes allow for much simpler construction of mass
conservative models on hierarchies of locally re�ned grids, along the lines of the cartesian
mesh re�nement approaches (see e.g. References [11, 12]).

2. THE SHALLOW WATER EQUATIONS AND THE NUMERICAL METHOD

The vector invariant form of the shallow water equations on the sphere is considered:

@u
@t
=− (�+ f)k × u − ∇(gh+ K) (1)

@h
@t
+∇ · (h∗u)=0 (2)

Here u is the horizontal velocity vector (on the sphere), K = |u|2=2 is the kinetic energy, � is
the vertical component of the relative vorticity, f is the Coriolis coe�cient, h∗ is the �uid
depth, h= h∗ + hs is the height of the free surface above mean sea level, hs is the height
of the orography, g is the gravitational constant and k the unit vector in the radial outward
direction.
The proposed discretization methods is de�ned on a special case of Delaunay triangulation

on the sphere, the icosahedral geodesic grid described, e.g. in Reference [8], which is obtained
by dyadic re�nement of the regular icosahedron. Although we will only refer to the icosahe-
dral grid in the following, the method can be easily generalized on more general Delaunay
triangulations, under mild regularity assumptions (see e.g. Reference [13]). The icosahedral
construction yields a Delaunay triangulation of the sphere to which a Voronoi tessellation is
naturally associated (see e.g. Reference [14] and the references therein for a complete de-
scription of Delaunay–Voronoi grid pairs on the sphere), which consists of convex spherical

Figure 1. Delaunay triangulation (solid lines) and Voronoi tessellation (dashed lines) on
the sphere, as obtained by dyadic re�nement of the regular icosahedron.
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polygons (either pentagons or hexagons, see Figure 1). The points of the icosahedral grid
obtained in this way constitute the Voronoi grid on the sphere. Each of them belongs to a
single hexagonal or pentagonal cell. The vertices of these polygons constitute the dual, or
Delaunay grid. The Delaunay cells of the icosahedral grid are all triangles. For each side of
a Voronoi cell, there is a unique orthogonal side of the Delaunay cell associated to it.
Some notation to describe the grid topology and geometry will now be introduced. Let i

denote the generic cell of the Delaunay grid. Let E(i) denote the set of all edges of cell i and
C(i) the set of all cells that have edges in common with cell i: The gridpoint associated to
cell i will also be referred to as the cell centre. The generic vertex of a cell, which is also the
centre of a cell in the dual grid, is denoted by v. C(v) denotes the set of all cells of which
v is a vertex and E(v) denotes the set of all edges of the dual cell whose centre is vertex v:
The area of cell i is denoted by Ai; while the area of the dual cell is denoted by Av: Let l
denote the generic edge of a cell. The length of the edge l of a cell is denoted by �l and the
distance between the centres of the cells adjacent to edge l is denoted by �l: At each edge, a
unit vector Nl normal to the edge l is assigned. Tl denotes the unit vector tangential to the
edge l; chosen in such a way that Nl × kl=Tl holds, where kl denotes the radial outgoing
unit vector perpendicular to the tangent plane at the intersection of the primal and the dual
edge l: Furthermore, for each cell edge, the unit vector pointing in the outer normal direction
with respect to cell i is denoted by ni; l: Unit vectors nv; l are also introduced, as pointing in
the outer normal direction with respect to the dual cell v: The corresponding tangential vectors
tv; l are de�ned so that nv; l × tv; l=kl: It can be seen that, by simple geometric arguments, one
has Nl · tv; l=Tl · nv; l:
In order to develop an analogue of the rectangular C-type staggering (see e.g. Reference [2])

on the Delaunay grids, the mass points are de�ned as the centres of the grid cells, while the
velocity points are de�ned for each cell edge as the intersection between the edges of the
Voronoi and Delaunay cells (see Figure 1). In a C-grid discretization approach, the discrete
prognostic variables considered are the value of the height �eld hi at the mass points (in-
terpreted as a cell averaged value) and the normal velocity components ul: The tangential
velocity components, which are needed, e.g. for the computation of the Coriolis force term,
must be reconstructed. Given the edge l of a cell, the adjacent cells are denoted by the indexes
i(l; 1) and i(l; 2). Vertex indexes v(l; 1) and v(l; 2) can also be de�ned analogously. Given
a generic discrete vector �eld g on the sphere, its value at a velocity point can be repre-
sented as gl= glNl+ ĝlTl; where gl and ĝl denote the normal and the tangential components,
respectively.
Given these de�nitions, discrete operators can be introduced, which will then be employed

to de�ne the proposed numerical algorithm. The directional derivatives in the normal and
tangential directions are easily approximated as

(��h)l=(hi(l;2) − hi(l;1))=�l; (��h)l=(hv(l;2) − hv(l;1))=�l (3)

The discrete divergence and curl operator can also be naturally de�ned as follows:

div(g)i=
1
Ai

∑

l∈E(i)
glNl · ni; l�l; curl(g)v=

1
Av

∑

l∈E(v)
glNl · tv; l�l (4)
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The spatial discretization of the continuity equation (2) is then given by

Ai
@hi

@t
=− Ai div( �h∗u)i (5)

where �h∗
l denotes the arithmetic average of the layer thickness values in the neighbouring cells.

The discrete momentum equation can be derived by taking the scalar product of Equation (1)
with the unit vector Nl at a generic velocity point. This yields the equation

@ul

@t
= − ( ��l + fl)vl − ��[gh+ K]l (6)

Here, vl is an approximation of the tangential velocity component, �v=curl(u)v and ��l is the
arithmetic average of the absolute vorticity values at the ends of the cell edge. An analogous
equation can be derived for the tangential velocity component. The Raviart–Thomas �nite
element of order zero (see e.g. References [4, 5]) is used to reconstruct at each cell centre i
a uniquely de�ned velocity �eld from the velocity components normal to the cell sides. An
important feature of this type of spatial discretizations is that taking the discrete curl of
Equation (6) yields automatically a consistent discretization of the relative vorticity equation.
It is to be stressed that the same result can be achieved on any dual Voronoi–Delaunay
pair. Staggered grid discretizations on quadrilateral grids also displaying this property have
been introduced in References [3, 15]. A spatially discretized version of the potential vorticity
conservation theorem can also be derived from this property.
A two time level semi-implicit time discretization of Equations (1) and (2) is then

given by

un+1
l = un

l −�t(fl + �̃n+�
l )vn+�

l −�t[��(ghn+� + K̃n+�)]l (7)

Aihn+1
i = Aihn

i −�tAi div( �h∗un+�)i (8)

Here, �n+�= ��n+1 + (1− �)�n, h∗
l = hn

l − hs
l and � ∈ [ 12 ; 1] for stability, with �= 1

2 yielding a
second-order accurate time discretization in the linear case. On the other hand,  ̃ n+� denotes
some estimate of the value of  at time (n+�)�t obtained by an explicit discretization. Along
the lines of Reference [5], where a more advanced �ux form semi-lagrangian scheme was
applied in an analogous step, a simple upwind discretization is employed in this preliminary
implementation for these intermediate updates. Since the discrete values of � are naturally
de�ned at the vertices of the triangular cells, the intermediate update of � is computed by a
discretization using as control volumes the dual hexagonal/pentagonal cells. The value of the
tangential velocity component at time step n+ 1 can be eliminated by deriving the analogue
of Equation (6) for the tangential velocity component. The discrete wave equation can then
be written as

Aihn+1
i − g�2�t2Ai div[((��hn+1)− ��t(f + �̃n+�)(��hn+1))�h∗]i=Fn

i (h) (9)

Fn
i (h) = Aihn

i − (1− �)�tAi div(h∗un)i − ��tAi div(h∗�Fn(u))i

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:863–869



A SEMI-IMPLICIT, MASS AND POTENTIAL VORTICITY CONSERVING MEHTOD 867

Fn
l (u) = un

l −�t(fl + �̃n+�
l )vnl − �(1− �)�t2(fl + �̃n+�

l )2un
l

− (1− �)�t(��ghn)l −�t(��K̃n+�)l

+ �(1− �)�t2(fl + �̃n+�
l )(��ghn)l + ��t2(fl + �̃n+�

l )(��K̃n+�)l (10)

where �l=1=(1 + �2�t2(fl + �̃n+�
l )2): The set of all Equations (9) for each cell i yields a linear

system in the unknowns hn+1
i : Its matrix is sparse and its symmetric part is positive de�nite

and diagonally dominant, which allows for e�cient solution even when using relatively simple
solvers. Once the values of hn+1

i have been computed, they are back substituted in Equation (7)
to obtain the �nal update of the discrete velocities.

3. NUMERICAL TESTS

Test cases proposed in the standard shallow water test suite [16] have been run with the
currently available, preliminary implementation. Since no complete normal mode and stability
analysis is available so far, no explicit di�usion was employed in our numerical experiments
in order to assess the e�ective stability and robustness of the proposed method. Values of
the implicitness parameter were taken to be in the range [0:55; 0:57]. The correct qualitative
behaviour of the computed solutions is shown in Figure 2, for test cases 5 and 6. As common
in low-order models using grids that are not symmetrical across the equator (see e.g. the
discussion in Reference [10]), an asymmetry develops in the solution of test case 6 on longer
time scales.
A full quantitative assessment of the accuracy of the proposed method is presently being

undertaken. Only preliminary results are shown here with this respect. For test case 5 a
reference solution was obtained with a spectral transform model. For this purpose, the spectral
transform model of Reference [17] was revised and upgraded to fortran90. The reference
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Figure 2. (a) Relative vorticity at day 15 in test case 5. Results were computed on grid level 6
with �t=450 s. Contour lines spacing is 10−5 s−1; and (b) height �eld at day 15 in test case 6.

Results were computed on grid level 6 with �t=225 s: Contour lines spacing is 100 m.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:863–869



868 L. BONAVENTURA ET AL.

-125 -100 -75 -50 -25 0 25 50 75 100 125 -75 -50 -25 0 25 50 75

(b)(a)

Figure 3. Height �eld error at day 15 in test case 5, computed on grid level 6 with �t=900 s
and on grid level 7 with �t=90 s. Black lines denote the orographic contours.

solution was computed at spectral resolution of T213 with a time step of �t=90s. In this test
a mountain pro�le with discontinuous derivatives is introduced in a balanced zonal �ow at the
initial time. The spectral reference solution is noisy close to the mountain and l∞ convergence
can only be achieved away from the mountain. Plots of the height �eld error at day 15 are
shown in Figure 3 on grid level 6 with �t=900 s and on grid level 7 with �t=90 s: It
can be observed that, increasing time and space resolution, errors decrease throughout the
computational domain away from the mountain.
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